Skip to content

Learn

Dancing with AI | 簡立峰老師於中央研究院的演說

Dancing with AI | 簡立峰老師於中央研究院的演說 - Labs of Botsnova

  • 訓練語料70%是英文
  • AI很會寫程式,因為有open source
  • 現在AI的神經元數量跟人類差不多,7000億個。
  • Perfect Storm:
    • AI (Deep Learning Algorithms)
    • Big Data (Internet Data)
    • Cloud Computing
  • GenAI/LLM非萬能
    • 不像傳統AI(google search),弭平地方差異 (NTU在各個國家是不同意思),LLM是一言堂。沒有時間感。
  • 用AI最重要是generating ideas (就像聊天獲得靈感)

dancing with AI dancing with AI dancing with AI

Design System For Public Transportion

Smashing Newsletter 看到關於大眾運輸的Design System,有趣。

HUNG-YI LEE (李宏毅)

start: 2023年4月 2024-05-30

https://www.youtube.com/watch?v=fegAeph9UaA&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49

ML Lecture 0: Intro

  • AI (目標) → Machine Learning (手段) → Deep Learning (ML的其中一種方式)
  • AI ⇒ 人類賦予的本能
  • Machine Learning ≈ Looking for a Function from Data
  • Framework
  • Step1: define a set of function ⇒ Model
  • Step2: goodness of function
  • Step3: pick the best function
  • Learning Map
  • Supervised Learning
    1. Regression [task]: the output of the target function f is "scalar" (數值)
    2. Classification [task]
    3. Linear Model [method]
    4. Non-linear Model
      • Deep Learning [method]
      • SVM, decision tree, K-NN... [method]
    5. Structured Learning
      • Beyond Classification
  • Semi-supervised Learning
    • Labelled + Unlabeled data
  • Transfer Learning
    • Labelled data + Data not related to the task considered (can be either labeled or unlabeled)
    • ex: 不相干的圖片,有什麼方式可以幫助學習
  • Unsupervisied Learning
    • 無師自通
  • Reinforcement Learning
    • Supervised .vs.Reinforcement Learning: Learning from teacher v.s. Learning from critics (比較像人類的學習方式)

ML Lecture 1: Regression

Andrew Ng

Deep Learning Specialization [5 courses] (DeepLearning.AI) | Coursera